Postnatal development differentially affects voltage-activated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Bötzinger complex.

نویسندگان

  • Frank P Elsen
  • Jan-Marino Ramirez
چکیده

The mammalian respiratory network reorganizes during early postnatal life. We characterized the postnatal developmental changes of calcium currents in neurons of the pre-Bötzinger complex (pBC), the presumed site for respiratory rhythm generation. The pBC contains not only respiratory rhythmic (R) but also nonrhythmic neurons (nR). Both types of neurons express low- and high-voltage-activated (LVA and HVA) calcium currents. This raises the interesting issue: do calcium currents of the two co-localized neuron types have similar developmental profiles? To address this issue, we used the whole cell patch-clamp technique to compare in transverse slices of mice LVA and HVA calcium current amplitudes of the two neuron populations (R and nR) during the first and second postnatal week (P0-P16). The amplitude of HVA currents did not significantly change in R pBC-neurons (P0-P16), but it significantly increased in nR pBC-neurons during P8-P16. The dehydropyridine (DHP)-sensitive current amplitudes did not significantly change during the early postnatal development, suggesting that the observed amplitude changes in nR pBC-neurons are caused by (DHP) insensitive calcium currents. The ratio between HVA calcium current amplitudes dramatically changed during early postnatal development: At P0-P3, current amplitudes were significantly larger in R pBC-neurons, whereas at P8-P16, current amplitudes were significantly larger in nR pBC-neurons. Our results suggest that calcium currents in pBC neurons are differentially altered during postnatal development and that R pBC-neurons have fully expressed calcium currents early during postnatal development. This may be critical for stable respiratory rhythm generation in the underlying rhythm generating network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models.

The pre-Bötzinger complex (pre-BötC), a neural structure involved in respiratory rhythm generation, can generate rhythmic bursting activity in vitro that persists after blockade of synaptic inhibition. Experimental studies have identified two mechanisms potentially involved in this activity: one based on the persistent sodium current (INaP) and the other involving calcium (ICa) and/or calcium-a...

متن کامل

Large-conductance calcium-activated potassium channels in the neurons of pre-Bötzinger complex and their participation in the regulation of central respiratory activity in neonatal rats.

The present study was conducted to test our hypothesis that the large-conductance calcium-activated potassium channels (BK(Ca) channels) exist in the neurons of the pre-Bötzinger complex (PBC), a brainstem region that may generate respiratory rhythm in mammals, and play roles in central regulation of respiratory activity in neonatal rats. Immunohistochemical technique revealed that BK(Ca) chann...

متن کامل

Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex

Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into ph...

متن کامل

Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the preBtzinger complex: a computational modelling study

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the preBö...

متن کامل

Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study.

The neural mechanisms generating rhythmic bursting activity in the mammalian brainstem, particularly in the pre-Bötzinger complex (pre-BötC), which is involved in respiratory rhythm generation, and in the spinal cord (e.g. locomotor rhythmic activity) that persist after blockade of synaptic inhibition remain poorly understood. Experimental studies in rodent medullary slices containing the pre-B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 2005